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A B S T R A C T   

Trauma-related disorders are debilitating psychiatric conditions that affect people who have directly or indirectly 
witnessed adversities. Experiencing multiple types of traumas appears to be common during childhood, and even 
more so during adolescence. Dramatic brain/body transformations occurring during adolescence may provide a 
highly responsive substrate to external stimuli and lead to trauma-related vulnerability conditions, such as 
internalizing (anxiety, depression, anhedonia, withdrawal) and externalizing (aggression, delinquency, conduct 
disorders) problems. Analyzing relations among neuronal, endocrine, immune, and biochemical signatures of 
trauma and internalizing and externalizing behaviors, including the role of personality traits in shaping these 
conducts, this review highlights that the marked effects of traumatic experience on the brain/body involve 
changes at nearly every level of analysis, from brain structure, function and connectivity to endocrine and im-
mune systems, from gene expression (including in the gut) to the development of personality.   

Trauma comes back as a reaction, not a memory 

(Bessel Van Der Kolk) 

1. Introduction 

Trauma-related disorders are highly debilitating psychiatric condi-
tions, with immeasurable social and economic costs. They affect more 
than 4 % of the population who have witnessed events involving direct 
or indirect exposure to aversive, threatening or fearful situations 
(Duncan et al., 2018). These pathological disorders, once considered 
anxiety disorders, include post-traumatic stress disorder (PTSD), reac-
tive attachment, acute stress, and adjustment disorders (American Psy-
chiatric Association, 2013). 

Experiencing multiple types of traumas appears to be common dur-
ing childhood, and even more during adolescence, which is arguably the 
second largest shift in development (following early life) due to con-
current changes across multiple domains of behavior and neurobiology 

(Dahl et al., 2018). Each stage of life depends on what preceded it, and 
young people certainly do not enter adolescence as “blank slates”. 
Rather, adolescent development is partly a consequence of earlier life 
experiences. Changes occurring during adolescence are strictly associ-
ated with a prolonged period of plasticity in order to prepare individuals 
for independence, but they also render the adolescent system highly 
vulnerable to the effects of trauma exposure. About two-thirds of young 
people are exposed to domestic and community violence, war and 
terrorism, bullying, motor vehicle accidents, and neglect (Box 1). In a 
more concise way, and in the framework of dimensional models of 
trauma, adversities are distinguished (although very often coexisting) in 
two main dimensions, namely threat and deprivation, with unique 
emotional, cognitive, and neurobiological correlates relevant to the 
emergence of psychopathology (Sheridan and McLaughlin, 2016; Cisler 
and Herringa, 2021; Silveira et al., 2021; Panuccio et al., 2022). The 
personality developed in the presence of early traumas is not well 
adapted to adult life. Traumatized adolescents face fundamental prob-
lems in basic trust, independence, and initiative, and they handle the 
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tasks of early adulthood whilst being burdened by impairments in 
self-care, cognition, memory, identity, and in the ability to form stable 
relationships. During adolescence, affective, cognitive, and behavioral 
symptoms related to trauma that causes significant impairment or 
suffering can be classified within the internalizing and externalizing 
domains (Hofstra et al., 2002; King et al., 2004; Reef et al., 2010). 
Internalizing problems are those having mood or emotion as their pri-
mary feature and include symptoms such as anxiety, depression, anhe-
donia, and withdrawal, while externalizing problems are those such as 
aggressiveness, delinquency, oppositional defiant disorder, and conduct 
disorder (Achenbach et al., 1991; Kovacs and Devlin, 1998). 

Thus, given the serious consequences of exposure to trauma, com-
bined with a growing awareness that many of these effects are not 
observed until adolescence (Kessler et al., 2005; Lee et al., 2014; Gee and 
Casey, 2015), researchers focused bio-psycho-social consequences of 
trauma on adolescence (Tottenham and Galván, 2016; Colich et al., 
2017). Living with a history of chronic trauma or experiencing exposure 
to acute trauma during the development may have different, and 
sometimes even more pronounced, effects on the brain/body than 
trauma exposure occurring in adulthood (Birn et al., 2014). The occur-
rence of trauma can be preadolescence-limited (i.e., early life trauma – 
ELT - in infancy or childhood) or adolescence-limited, with behavioral 
and brain/body effects related to trauma being measured in adolescence 
(Table 1 shows the ages for specific life periods of the analyzed samples 
in literature). 

This review starts builds on the crucial assumption that the symp-
tomatology of trauma-related disorders very often reflects the long- 
lasting response to adversities that were a previously encountered 

(McLaughlin et al., 2013), and analyzes the effects of trauma on ado-
lescents by examining the relations among neuronal, endocrine, im-
mune, and biochemical signatures of trauma and internalizing and 
externalizing behaviors, including the role of personality traits in 
shaping these behaviors. The effects of traumatic experience on the 
brain/body involves changes at nearly every level of analysis, from 
cellular signalling to behavioral expression. In this framework, brain 
structure, function and connectivity (Fig. 1), endocrine and immune 
systems, genetics/epigenetics, and gut microbiome undergo marked 
changes following trauma exposure. In order to address trauma-related 
alterations at those levels of analysis, it was initially necessary to 
introduce the developmental trajectories characterizing the adolescent 
brain/body in the absence of traumatic experiences. 

2. Adolescence as an open window on the environment: 
reorganization of neuronal and endocrine systems 

Humans have one of the slowest rates of brain development of all 
species, needing years to reach maturity (Thompson and Nelson, 2011; 
Landers and Sullivan, 2012; Ho and King, 2021). The upside of their long 
adolescent period is an intense developmental plasticity, whilst the 
downside is a significant vulnerability of the systems to internal/-
external inputs. In fact, developmental brain is not an immature version 
of adult brain, but rather exhibits specific functional adaptations suited 
for the demands of life (Opendak and Sullivan, 2019). One of the 
adaptive values of a long adolescence is a prolonged period of syn-
aptogenesis and dendritic/synaptic pruning, neuroplasticity, and 
neuronal connectivity (Houston et al., 2014; Ho and King, 2021). 

Box 1 
Life traumatic events for children and adolescents. Traumatic events are frightening, dangerous, or violent events that pose a threat to an in-
dividual’s life or bodily integrity. Even witnessing a traumatic event that threatens life or physical security of a loved one can be traumatic for 
children and adolescents, since their sense of safety depends on the perceived safety of their attachment figures. 

What experiences might be potentially traumatic for children and adolescents? 

- Physical abuse: a parent or caregiver commits an act that results in physical injury to a child/adolescent. 

- Sexual Abuse: any interaction between a child/adolescent and an adult (or another child/adolescent) in which the subject is used for the 
sexual stimulation of the perpetrator or an observer. 

- Psychological abuse and neglect: child/adolescent’s exposure to severe traumatic events - often of an invasive, interpersonal nature, such as 
abuse or profound neglect. They usually occur early in life and can disrupt many aspects of the development and the formation of a sense of Self. 

- Sex trafficking: giving or receiving of anything of value (money, shelter, food, clothing, drugs, etc.) to any person in exchange for a sex act 
with someone under the age of 18. 

- Natural disasters: effects of hurricanes, earthquakes, tornadoes, wildfires, tsunamis, and floods, as well as extreme weather events such as 
blizzards, droughts, extreme heat, and wind storms. 

- Terrorism and violence: effects of mass violence, acts of terrorism, or community trauma in the form of shootings, bombings, or other types of 
attacks. 

- Community and school violence: exposure to intentional acts of interpersonal violence committed in public areas by individuals who are not 
intimately related to the victim. 

- Bullying and Cyberbullying: deliberate and unsolicited action that occurs with the intent of inflicting social, emotional, physical, and/or 
psychological harm to someone perceived as less powerful. Bullying can be physical (hitting, tripping, kicking, etc.), verbal (name calling, 
teasing, threatening, and sexual comments), and social (spreading rumors, embarrassing someone in public, being purposefully exclusive). 
Cyberbullying includes sending negative, harmful, and/or false content electronically via text messages or email, as well as posting mean text or 
hurtful pictures online through social media, blogs. 

- Domestic violence: witnessing events in which an individual purposely causes harm or threatens the risk of harm to familiars loved by the 
child/adolescent. 

- Refugee and war experiences: including torture, trauma related to war or persecution that may affect child/adolescent’s mental and physical 
health long after the events have occurred. 

- Serious accidents or life-threatening ill: psychological and physiological responses of children/adolescents and their families to pain, injury, 
serious illness, medical procedures, and invasive or frightening treatment experiences. Medical trauma may occur as a response to single or 
multiple medical events.  
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Accordingly, environmental influences generate distinct effects on brain 
circuitries due to developmental constraints in sources of input and in 
mechanisms of plasticity, leading to alearning about the environment, in 
particular about the social environment (Blakemore, 2008; Ho and King, 
2021), and complex behaviors (e.g., executive function, emotion regu-
lation, social cognition, and mentalizing) (Blakemore, 2008; Pfeifer and 
Allen, 2021). From an evolutionary perspective, adolescents acquire the 
necessary input for early survival from their caregivers and gain the 
skills that only “primary relationships” can provide through the 
attachment system (Ainsworth, 1969; Bowlby, 1977; Piekarski et al., 
2017). 

The brain develops throughout childhood and adolescence and each 
brain area has its own developmental trajectory and maturation. The 
increasing ability to regulate cognitive, emotional and social domains 
heavily relies on interactions among amygdala (AMY), medial prefrontal 
cortex (mPFC that encompasses in humans the areas 24, 25, and 32 
labelled with Brodmann’s numbers), striatum, and hippocampus 
(Somerville and Casey, 2010; Somerville et al., 2011). 

Structural studies show that the basic architecture of the AMY is 
established at birth and continues during infancy and adolescence 
(LoPilato et al., 2019; Hanson and Nacewicz, 2021). Such AMY 

developmental trajectorys is coupled with the even more prolonged 
development of cortical regions involved in cognitive control and 
emotion regulation (Merikangas et al., 2010; Marshall, 2016). Again, the 
maturation of the frontal lobe which is ongoing during and beyond 
adolescence may be beneficial in terms of learning conventions, 
including language and social norms (Thompson-Schill et al., 2009), but 
it may also strengthen the effect of negative social and environmental 
factors that can have long-term consequences on the brain development 
and cognitive abilities (Steinberg, 2005). 

Functional magnetic resonance imaging (fMRI) studies showed that 
AMY reactivity to negative faces and images decreases with age during 
adolescence (Silvers et al., 2017; Constantinidis and Luna, 2019), and is 
accompanied by a significant structural and functional connectivity with 
the mPFC (Keding and Herringa, 2016; Silvers et al., 2017; Con-
stantinidis and Luna, 2019). These normative patterns contribute to a 
decreased reactivity to negative contents and an enhanced ability of 
regulating emotions gained as adolescence progresses (Herringa, 2017). 

Remarkably, during adolescence there are also significant develop-
mental changes in the ventral striatum. Adolescents show a strong 
activation of the ventral striatum in response to primary (Galván and 
McGlennen, 2013), secondary (Galvan et al., 2006; Cohen et al., 2010; 

Table 1 
Ages for specific life periods of the samples analyzed in the reported literature. y: years.  

References Early childhood Childhood Early adolescence Adolescence Late adolescence Adult 

Agans et al. (2008)    11–18 y  22–61 y 
Appel et al. (2011)      20–79 y 
Banny et al. (2014)  8–13 y     
Behen et al. (2009)  6–15 y     
Cicchetti et al. (2011)  7–13 y     
Cisler et al. (2013)    12–16 y   
Cohen et al. (2010)  8–12 y  14–19 y  25–30 y 
Colich et al. (2017)   9–13 y    
Cowell et al. (2015)  3–9 y     
Dandash et al. (2021)   12 y 16 y 19 y  
Darnell et al. (2019)    13–19 y   
De Bellis et al. (2012)    10–18 y   
Do & Galván (2015)    13–18 y  25–30 y 
Eluvathingal et al. (2015)  10.2 y (mean)     
Galvan et al. (2006)  7–11 y  13–17 y  23–29 y 
Galván and McGlennen (2013)    13–17 y  23–35 y 
Gee et al. (2013)  6–10 y  10–17 y   
Ginsburg et al. (2015)  6–13 y     
Goff et al. (2013)  5–10 y  11–15 y   
Govindan et al. (2010)  7–15 y     
Guyer et al. (2006)  8–14 y     
Hanson et al. (2015)    11–15 y   
Heleniak et al. (2016)    13–17 y   
Herringa et al. (2013)    18.79 y (mean)   
Herringa et al. (2016)    18–19 y   
Ho et al. (2020)    9–16 y   
Jensen et al. (2015) 0–6 y 7–13 y   18–21 y  
Kaufman (1991)  7–12 y     
Kaufman et al. (1997)  7–13 y     
Kaufman et al. (2004)  5–15 y     
Loman et al. (2014)   12–13 y    
Marshall (2016)    13–18 y   
McLaughlin et al. (2012)    13–17 y   
McLaughlin et al. (2013)    13–17 y   
McLaughlin et al. (2015)    13–19 y   
Merikangas et al. (2010)    13–18 y   
Nooner et al. (2022)    12–14 y   
Nooner et al. (2013)    13–17 y   
Pagliaccio et al. (2015)  9–14 y     
Phillips et al. (2021)    12–21 y   
Platt et al. (2016)  7–13 y     
Powers et al. (2021)  8–12 y     
Silveira et al. (2021)    12–22 y   
Somerville et al. (2011)  6–12 y  13–17 y  18–29 y 
Suzuki et al. (2014)  7–12 y     
Telzer et al. (2013)    15–18 y   
Whittle et al. (2016)    11–20 y   
Wu et al. (2016)  7–12 y  13–18 y  19–25 y  
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Van Leijenhorst et al., 2010), and social rewards (Guyer et al., 2008; 
Telzer et al., 2013). These neuronal findings are mirrored by an 
increased reward sensitivity, risk taking and motivational behavior in 
adolescents, as compared to other age groups (Galván and McGlennen, 
2013). Interestingly, environmental conditions may exacerbate or 
diminish these effects, underscoring the flexibility of the mesolimbic 
system during this crucial period (Do and Galván, 2016). 

During development, “activating” and “organizing” effects of adrenal 
and gonadal hormones on brain plasticity have been reported (Sisk, 
2017; Laube et al., 2020). Namely, during puberty increased levels of 
these hormones have been associated to changes in gray matter (GM) 
volumes and white matter (WM) connections (Herting and Sowell, 2017; 
Ho et al., 2020), demonstrating the link between the maturation of these 
brain regions and behavioral responses to socially relevant stimuli 
(Pfeifer and Allen, 2021). During adolescence, peers become an espe-
cially critical source of environmental input and drive exploratory and 
approach behaviors. While positive peer relationships can buffer ado-
lescents’ responses to negative experiences (Adams et al., 2011), nega-
tive peer relationships and an increased social risk taking may became a 
source of trauma in itself (Vijayakumar et al., 2018; Laube et al., 2020). 

According to the “pubertal stress recalibration” hypothesis (Gunnar 
et al., 2019), neuroendocrine plasticity in puberty allows the more 
recent positive experiences to remedy the effects of earlier experiences 
of adversity. Interestingly, the hypothalamic-pituitary-adrenal (HPA) 
axis undergoes tremendous changes during the transition to adolescence 
(Netherton et al., 2004; Adam, 2006; Gunnar et al., 2009), both in basal 
levels and in response to stressful situations (e.g., public speaking, peer 
rejection or school failures) (Klimes-Dougan et al., 2001; Stroud et al., 
2004). Furthermore, during adolescence the massive maturation of the 
cortical and subcortical regions is highly influenced by cortisol and 
stress-related hormones (Graf et al., 2013). 

This combination of developmental changes has a major influence on 
the susceptibility to trauma of adolescents, and the effects of develop-
mentally chronic, pre-adolescent or adolescent limited traumas are 
addressed in the next sections. 

3. Trauma-related reorganization of neuronal system in 
adolescence 

The various types of traumatic experiences alter structure, function, 
and connectivity of the AMY, mPFC, striatum, and hippocampus during 
adolescence (Tottenham and Sheridan, 2009; Tottenham, 2012). These 
alterations correspond to increased fear reactivity (Fani et al., 2015), 
attentional bias towards adversity (Fani et al., 2015; Troller-Renfree 
et al., 2015), and difficulty with affective regulation (Tottenham et al., 
2010), contributing to a risk of externalizing/internalizing behaviors 
(Fig. 2). 

Furthermore, for individuals raised in environments where multiple 
sources of threat/deprivation are present or long-term survival is un-
certain, the “developmental reprioritization” is often marked by an 
accelerated maturation (in areas such as AMY and mPFC), characterized 
by an earlier emergence of adult-like phenotypes (Callaghan and Tot-
tenham, 2016; Belsky, 2019), underlying an altered threat processing 
(Gee et al., 2013a, 2013b; Keding and Herringa, 2016; Wu et al., 2016). 

3.1. Brain structural alterations associated with increased an risk of 
externalizing/internalizing behaviors 

Within the neuroimaging studies demonstrating an association be-
tween trauma and brain structures, recent findings by VanTieghem et al. 
(2021) showed that adolescents who suffered early social neglect in 
institutional care have a reduced growth rate of the AMY. In the same 
line, increased maternal aggressive behaviors (i.e., expression of anger, 
contempt, and belligerent or provocative attitude) are associated with 
adolescent sons’ alterations of the superior frontal and lateral parietal 
cortical thickness (Whittle et al., 2016), which in turn are predictive of 
functional outcomes such as school performance and academic 
achievement. Conversely, a high frequency of positive maternal be-
haviors (i.e., happy and caring affection, and approving or validating 
comments) predicts an attenuated volumetric growth in the AMY, and 
an accelerated cortical thinning in orbitofrontal regions (Whittle et al., 
2016, 2014) in adolescent sons, suggesting an association between 
parenting and adolescent brain maturation. In a longitudinal study 
examining brain structural development in traumatized adolescents 

Fig. 1. Life (early and middle childhood, adolescence) trauma elicits brain structural, functional and connectivity alterations and may result in externalizing and 
internalizing behavioral problems. 
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compared to not-traumatized adolescents over one year, stable re-
ductions are found in ventromedial PFC (vmPFC) and ventrolateral PFC 
(vlPFC) volume (Heyn et al., 2019). 

Importantly, in a recent longitudinal study Phillips et al. (2021) 
measured the effects of ELT and alcohol use, an externalizing conduct, 
on the developmental trajectories of the AMY and the volumes of hip-
pocampal subregions in adolescents. The effect of ELT at baseline is 
associated with a larger right CA3 head hippocampal volume. Whereas 
younger adolescents with greater trauma exposure at baseline have 
smaller volumes of left hippocampal subiculum and molecular layer 
hippocampal head, older adolescents with greater trauma exposure at 
baseline have a larger volume of right AMY paralaminar nucleus, and a 
smaller volume of whole AMY. Lastly, adolescents who reported greater 
alcohol use with greater baseline trauma show smaller volumes of right 
hippocampal CA1 head, yet larger whole hippocampus volume. Thus, 
concurrent trauma and alcohol use affect volume and trajectory of 
hippocampal and AMY structures, supporting the hypothesis that AMY 
and hippocampus do not homogeneously respond to trauma. 

Finally, associations between ELT, internalizing symptoms during 
childhood and early adolescence, and brain structures in late adoles-
cence were investigated in a community-based birth cohort (Jensen 
et al., 2015). Early adversity is directly associated with smaller volumes 
in the anterior cingulate cortex (ACC) and greater volumes in the pre-
cuneus, as well as higher levels of internalizing symptoms are associated 

with smaller superior frontal gyrus volume. 

3.2. Brain functional alterations associated with an increased risk of 
externalizing/internalizing behaviors 

Evidence from fMRI studies showed that trauma exposure impairs 
top-down control of PFC on limbic system (De Bellis, 2002; Crews et al., 
2016). Adolescents who have experienced high ELT levels exhibit 
heightened activation of brain regions (AMY, anterior insula, dorsal 
ACC) involved in processing salient stimuli, when exposed to emotion-
ally evocative faces and images (Garrett et al., 2012; Suzuki et al., 2014; 
Marusak et al., 2015). Adolescents with a history of physical abuse and 
neglect/deprivation (De Bellis and Hooper, 2012) or exposure to family 
violence (McCrory et al., 2011) exhibit elevated AMY reactivity in 
response to highly arousing emotional faces, even when pre-attentively 
presented (McCrory et al., 2013). Elevated AMY reactivity to emotional 
faces has also been observed in adolescents who experienced depriva-
tion, such as low parental warmth (Casement et al., 2014) or severe 
neglect and institutional care during infancy (Maheu et al., 2010; Tot-
tenham et al., 2011; Gee et al., 2013a). Moreover, the observation that 
traumatized adolescents more likely exhibit AMY developmental tra-
jectory similar to adolescents with significant familial risk for depression 
(Swartz et al., 2015) suggests that AMY hyperactivity in adolescence 
may be an important biomarker for mental illness, associated with 

Fig. 2. Trauma-related impairment of connectivity between prefrontal cortex (PFC) and amygdala, striatum and hippocampus results in maladaptive behaviors 
during adolescence. 
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affective dysregulation and internalizing symptoms. Notably, it has been 
reported that only adolescent females, and not males, exhibit positive 
associations between ELT and vlPFC activation during implicit emotion 
regulation, between ELT and internalizing problems, and between 
activation in these regions and internalizing problems (Colich et al., 
2017). In accordance, among females, ELT has been found to be a 
relevant risk factor for the development of major depressive disorder (Ge 
et al., 2001; Rudolph and Flynn, 2007). Females also differ from males in 
their perception of adverse life events (Raffaelli et al., 2016), in bio-
logical responses to acute and chronic stressors, and in neuronal 
response to negative stimuli (Novais et al., 2017). Given the striking sex 
differences in the incidence of internalizing disorders, there may be 
sex-specific mechanisms (as sex-specific effects on corticolimbic cir-
cuitry) through which ELT contributes to vulnerability for internalizing 
problems in adolescence (Teicher et al., 2003). In this context, the age at 
which sex differences in internalizing disorders become most pro-
nounced corresponds to the complex developmental period of puberty 
that is typically experienced earlier in females than in males (Negriff and 
Susman, 2011). 

In a study on adolescents with history of child maltreatment, 
McLaughlin et al. (2015) found a bias toward negative stimuli and, 
relatively to non-maltreated adolescents, greater recruitment of PFC 
during cognitive reappraisal to achieve comparable reduction of AMY 
activity. In this study, maltreated and non-maltreated adolescents 
demonstrate comparable emotional regulation abilities via AMY mod-
ulation, but maltreated adolescents employ more executive resources to 
do it, and this would reduce their availability to regulate subsequent 
distress (Muraven and Baumeister, 2000). In parallel, traumatized ad-
olescents show increased activation in superior frontal gyrus and frontal 
pole when downregulated their negative affect to a negative image, 
(McLaughlin et al., 2015). Similarly, adolescents exposed to child 
trauma exhibit elevated dorsolateral PFC (dlPFC) activation when per-
forming an emotional conflict task (Marusak et al., 2015). It has been 
also reported that positive maternal behavior in early adolescence is 
associated with lower activation in the left parietal cortex and dlPFC 
during a task activating cognitive and attention brain networks (Karls-
godt et al., 2018). 

Like the AMY and mPFC, in adolescence the ventral striatum is 
highly influenced by aversive experiences. Adolescents with a history of 
deprivation (institutional caregiving) exhibit blunted ventral striatal 
response, and specifically they do not differentiate reward predicting 
cues (Mehta et al., 2010). Goff et al. (2013) showed that group differ-
ences in ventral striatal responses to positive facial emotions between 
individuals with a history of institutional care and typically-raised 
subjects emerge in adolescence. Furthermore, adolescence is the time 
when depression symptoms significantly increase, and ventral striatal 
hypoactivity correlates with depressive symptomology in the 
adversity-exposed group. 

Consistently with the blunted ventral striatal reactivity, adolescents 
with a history of early adversity (institutional caregiving, maltreatment) 
and a diagnosis of depression less likely engage in risky behaviors 
(Guyer et al., 2006; Loman et al., 2014). These findings fit the 
assumption that ELT may render the adolescent vulnerable to internal-
izing behaviors just because of the effect of trauma on ventral striatal 
development during this sensitive time (Auerbach et al., 2014; Goff and 
Tottenham, 2015). 

3.3. Brain functional connectivity alterations associated with an 
increased risk of externalizing/internalizing behaviors 

A way to measure functional connectivity is to employ resting state 
fMRI measures, which assay spontaneous regional interactions occur-
ring when the subject is not performing any explicit task and provide an 
index of the integrity of functional connections between regions of 
interest. 

Adolescents with a history of child maltreatment (Herringa et al., 

2013) or trauma (Pagliaccio et al., 2015; Thomason et al., 2015) exhibit 
weaker connectivity between AMY and mPFC regions and AMY and 
hippocampus (Nooner et al., 2013, 2022). The nature of AMY-mPFC 
resting state connectivity has implications for mental health. In fact, 
in adolescence weaker AMY-mPFC connectivity is associated with 
increased anxiety (Kim et al., 2011; Pagliaccio et al., 2015). Further-
more, Burghy et al. (2012a) provided compelling evidence that devel-
opmental trauma increases the risk for internalizing problems, and this 
relation is mediated by alterations to AMY-mPFC functional 
connectivity. 

Notably, traumatized adolescents paradoxically show lower AMY 
reactivity, greater dmPFC activation, and greater AMY-vmPFC connec-
tivity at younger ages, a pattern which reverses by late adolescence and 
is independent from trauma onset (Gee et al., 2013b; Vink et al., 2014). 

ELT predicts resting state functional connectivity of inferior frontal 
gyri and, in turn, the altered connectivity of inferior frontal gyrus pre-
dicts the presence of externalizing symptoms in early adolescence 
(Barch et al., 2018a). Furthermore, a thinner inferior frontal gyrus in 
early adolescence predicts drinking and externalizing psychopathology 
in late adolescence (Brumback et al., 2016), reinforcing the notion that 
the connectivity of the inferior frontal gyrus may be associated with 
impulsivity (Herz et al., 2014; Wang et al., 2016). Importantly, child 
neglect is negatively associated with resting-state functional connec-
tivity of the dorsal ACC to brain regions within the cingulo-opercular 
network, a well-known executive function network that underlies con-
trol of attention and self-regulation, and this connectivity pattern me-
diates the association between neglect and externalizing behaviors 
(Silveira et al., 2021). 

In traumatized adolescents, the altered functional connectivity has 
been demonstrated not only through the above-reported resting state 
analyses, but also through tasks involving effortful emotional regula-
tion. In a sample of traumatized adolescents performing an emotional 
conflict task that involves categorizing facial emotions and ignoring the 
overlying emotional words, marked trauma-related alterations emerge 
in AMY and PFC (Marusak et al., 2015). Specifically, the trauma-exposed 
adolescents exhibit AMY-PFC connectivity patterns consistent with poor 
emotional regulatory function. 

It has been reported that adolescents exposed to ELT show stronger 
negative AMY-PFC connectivity - a more mature, adult-like pattern of 
connectivity - while viewing negative facial expressions (Goff et al., 
2013; Wolf and Herringa, 2016). The magnitude of this effect is asso-
ciated with avoidance behaviors (Wolf and Herringa, 2016). Similarly, 
during an aversive learning paradigm, adolescents with a history of 
deprivation (institutional care) more likely exhibit adult-like patterns of 
AMY-PFC connectivity (Silvers et al., 2017). All these findings reflect 
adaptive functioning in the face of adversity and indicate that adoles-
cents exposed to ELT may develop adult-like patterns of connectivity at 
an earlier age in order to deal more effectively with environmental 
adversity. In fact, Gee et al. (2013a) showed that in previously institu-
tionalized adolescents, negative pattern of AMY-mPFC functional con-
nectivity is associated with lower levels of separation anxiety, pointing 
out that adult-like pattern may be protective against early adversities. 
However, it has to be considered that the early development of adult-like 
pattern also represents the premature end of the sensitive period of 
childhood, suggesting a potential acceleration linked to trauma in the 
development of the circuitry that supports socio-emotional processing 
and regulation. The long-term consequences of this earlier maturation 
are still unclear as are ELT effects on the developmental trajectories of 
AMY-mPFC circuitry from childhood to adulthood. Decreased 
AMY-mPFC connectivity in relation to family adversity and maltreat-
ment mediates the occurrence of some risk for adolescent internalizing 
symptoms (Gilmore et al., 2010; Raznahan et al., 2011). Child adversity 
predicts increased fronto-AMY connectivity in response to negative, but 
not positive, images, only in adolescents with low internalizing behav-
iors, and also predicts increased fronto-hippocampal connectivity in 
response to negative images, even if not moderated by internalizing 
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conducts (Herringa et al., 2016). Taken together, these findings argue 
that adaptation to child adversity is associated with enhanced activity of 
fronto-subcortical circuits, specifically for negative emotional stimuli. 
Conversely, poor enhancement of fronto-AMY connectivity, with 
increased AMY reactivity, may represent the neural signature of 
vulnerability for internalizing behaviors by late adolescence. Neuronal 
mark of adaptation to child adversity involves augmentation of func-
tional connectivity in fronto-AMY and fronto-hippocampal pathways, 
important routes in the regulation of fear and anxiety. 

Given the early maturation of the AMY within the hierarchical brain 
development, it is possible that the extent of connectivity of AMY with 
PFC regions in adolescence depends on its earlier emerging function 
(Gee et al., 2013b). That is, trauma-induced AMY hyperreactivity might 
increase the risk for its atypical (in nature, timing, or both) connections 
with the PFC. 

In addition to the changes in AMY-mPFC circuitry, adolescence is 
also featured by changes in the neuronal correlates of reward sensitivity 
and cognitive regulation (Steinberg, 2005). Specifically, the ventral 
striatum supports reward-related processes, such as reward-based 
learning (Fiorillo et al., 2003), through reception of dopaminergic in-
puts from the ventral tegmental area and substantia nigra (Haber, 2011). 
The dopamine system, which undergoes significant maturation during 
adolescence (Andersen and Teicher, 2009, 2008; Spear, 2009), is very 
sensitive to the effects of adversity (Starcke and Brand, 2012). Re-
searches independently performed by Hanson et al. (2015) and 
Schneider et al. (2012) have shown that even few extreme forms of 
caregiving adversity (as low maternal affiliation or emotional neglect) 
are associated with alterations in ventral striatal areas. Importantly, 
Hanson et al. (2015) reported that a history of emotional neglect was 
associated with decreased functional connectivity (perhaps even nega-
tive) between AMY and ventral striatum in response to reward, 
advancing a possible process linking elevated AMY reactivity to blunted 
ventral striatum functioning in adolescents with a history of adversity. 
The low responsivity of ventral striatum during adolescence following 
ELT may predict the emergence of internalizing symptoms in 
reward-related paradigms. 

Finally, the trauma-associated alterations in fiber tracts have been 
recently investigated by using diffusion tensor imaging (DTI). DTI 
indices, encompassing fractional anisotropy (FA) and mean diffusivity 
(MD), provide estimates of microstructural changes in WM pathways, 
allowing for a more nuanced understanding of WM differences, when 
compared with traditional volumetric methods. Numerous studies on 
children internationally adopted after previous histories of deprivation 
(institutional rearing) show reduced integrity (lower FA and higher MD) 
of limbic and para-limbic (Eluvathingal et al., 2006; Govindan et al., 
2010; Kumar et al., 2011; Hanson et al., 2013) and fronto-striatal (Behen 
et al., 2009; Kumar et al., 2014) circuitries. Even the trauma-associated 
alterations in the external capsule and corpus callosum might explain, at 
least partially, the link between institutional rearing and internalizing 
symptoms in early adolescence (Bick et al., 2017), considering that WM 
tracts involved in circuitries supporting emotion and stress regulation 
may be particularly implicated in risk for internalizing symptoms. 

4. Trauma-related reorganization of endocrine and immune 
systems in adolescence 

Exposure to a single abrupt traumatic event or series of chronic 
traumatic events can lead to repeated activation of the HPA axis, 
physiological system of stress response (Tarullo and Gunnar, 2006; 
Trickett et al., 2010; De Bellis and Zisk, 2014; Cross et al., 2017). Such a 
system is made up of different sub-systems working together to protect 
the individual against environmental adversities and to shift metabolic 
resources from homeostasis toward “fight, flight or freeze” reaction 
(Cannon, 1939; Chrousos and Gold, 1992). The traumatic stressors are 
processed by cortical structures that directly or indirectly (via the 
thalamus) activate the AMY. In the presence of fear signals processed by 

AMY, hypothalamus, hippocampus, and mPFC, the cortisol levels in-
crease and, in turn, increase the activity in the locus coeruleus and 
sympathetic system. In accordance, Burghy et al. (2012a) reported that 
early traumatic events are associated in childhood with increased 
cortisol levels, which in adolescence predict altered functional connec-
tivity between AMY and mPFC as well as internalizing problems. These 
effects are observed only in females, suggesting a possible hormonal 
basis for the commonly observed sex differences in risk for internalizing 
problems. Conversely, inefficient cardiovascular responses to stress are 
positively associated with externalizing symptoms (Heleniak et al., 
2016). 

Cortisol activates glucocorticoid and mineralocorticoid receptors 
located and expressed throughout the brain. Glucocorticoid receptors 
act as transcription factors and regulate gene expression for metabolism 
and immune function (Lupien et al., 2009). Namely, increased levels of 
cortisol turn off the immune system and gluconeogenesis, inhibit its own 
secretion via negative feedback on hippocampal glucocorticoid re-
ceptors (Chrousos and Gold, 1992), and have neurotoxic effects (Lupien 
et al., 2016). In fact, in traumatized youths elevated levels of cortico-
tropin releasing hormone (CRH), whose main function is the stimulation 
of the cortisol synthesis, lead to pituitary hypertrophy, most pronounced 
during very early childhood and puberty (Thomas and De Bellis, 2004). 

This idea agrees with McEwen’s theory of allostatic load (McEwen, 
2007), defined as the phenotypic consequences of chronic activation of 
stress response systems, including neural adaptations to environmental 
inputs combined with endocrine and immune responses (McEwen and 
Stellar, 1993; Lupien et al., 2007). While the physiological changes that 
attend exposure to adversity are helpful in the short-term by allowing 
the body to maintain homeostasis in spite of changing environmental 
conditions, over time these initially adaptive responses produce “wear 
and tear” on regulatory systems. On one hand, acute exposure to 
adversity promotes the secretion of hormones (e.g., cortisol) and 
pro-inflammatory cytokines that drive changes in structural plasticity of 
the AMY and hippocampus to enhance learning for similar traumatic 
events (McEwen et al., 2016). On the other hand, through these same 
hormonal and immune mediators the chronic exposure to adversity 
elicits glutamatergic excitotoxicity and atrophy in the AMY and hippo-
campus provoking impaired memory and other behavioral and cognitive 
symptoms, commonly found in internalizing behaviors (McEwen, 2004). 

However, in some individuals exposed to ELT, lower (and not higher) 
cortisol levels and attenuated cortisol reactivity (i.e., HPA axis down-
regulation) have been reported, with the onset of such a downregulation 
typically occurring during adolescence (Trickett et al., 2010). Down-
regulation of the HPA axis follows a period of chronic upregulation and 
may be the result of increased sensitivity of glucocorticoid receptors 
leading to blunted stress reactivity and lower baseline cortisol levels, 
potentially acting as a compensatory strategy. One of the most robust 
findings of an interesting meta-analysis by Miller et al. (2007) states that 
the longer is the time by the trauma, the lower are the levels of adre-
nocorticotropic hormone (ACTH) and postdexamethasone cortisol, as 
well as the lower are the levels of morning cortisol. 

Activation of the immune system elicits the production of cytokines, 
promoting the inflammatory reaction. The increasing levels of pro- 
inflammatory cytokines in response to acute or chronic trauma elicit 
hyperactivation of the HPA axis that, in turn, leads to a further rise in 
levels of cytokines through positive feedback (Janssen et al., 2010; Eyre 
and Baune, 2012). In particular, IL-1, IL-6, TNF-a and IFN-a increase the 
CRH release and disrupt glucocorticoid receptor function. These mech-
anisms are particularly relevant during adolescence, when brain struc-
tures are susceptible to adverse effects of prolonged periods of excessive 
amounts of corticosteroids with consequent atrophy of the apical den-
drites of the hippocampal pyramidal cells (McKittrick et al., 2000). 

The cytokines also affect biological pathways associated with 
depression, crucial component of internalizing behavior. The cytokine 
theory in depression can be viewed as complimentary rather than 
competitive to other hypotheses on depression etiology, such as the 
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monoaminergic theory (Ruhé et al., 2007). Increased levels of cytokines 
lead to depressive symptoms by reducing serotonin levels and stimu-
lating neuronal damage (Goebel et al., 2000; Madrigal et al., 2002; 
O’Connor et al., 2003; Deinzer et al., 2004). Interestingly, Pouget et al. 
(2022) provided preliminary evidence that common variation in IL-6 
may be associated with depressive symptoms in children and adoles-
cents, and that common variation in interleukin genes may sensitize 
individuals to the internalizing effects of traumatic life experiences. 

5. Genetic and epigenetic signatures of externalizing/ 
internalizing behaviors after trauma 

The adolescents experiencing threat and deprivation display great 
variability in the physiological, neurobiological, and behavioral out-
comes after trauma. Such a variability is affected by environmental (e.g., 
type of trauma) and genomic factors, influencing individuals’vulner-
ability and resilience (Spear and Silveri, 2016). Genomic, epigenomic, 
and transcriptomic studies, aimed to understand why some individuals 
are more likely than others to develop certain traits or psychopathology 
after experiencing trauma, are emerging areas of research (Layfield 
et al., 2021; Gladish et al., 2022). 

While it has become clear that the effects of individual genetic var-
iants on behavior are too small to be reliably detected (Kendler, 2013), 
burgeoning genome-wide association studies (GWASs) are now 
informing on the development of polygenic scores - aggregate indices of 
genetic influences - that can be used to more directly examine the role of 
genomic influences in responding to trauma (Harden and Koellinger, 
2020; Layfield et al., 2021). 

A large GWAS was able to assess genomic factors that could influence 
exposure to ELT (Dalvie et al., 2020). Two genome-wide significant loci 
rs142346759 and rs10262462 (annotated to genes FOXP1 and FOXP2, 
respectively) are significantly associated with early maltreatment. A 
significant genetic overlap has been found between early maltreatment 
and internalizing/depressive symptoms, suggesting there may be shared 
underlying mechanisms of predisposition. 

In a transcriptome-wide study, Minelli et al. (2018) compared gene 
expression in subjects who experienced ELT (sexual abuse, physical 
abuse, emotional abuse, and emotional neglect) with and without 
depression diagnosis. A specific association has been found between 
neglect and MED22 gene, encoding for a protein that contributes to 
coordination of transcription and cell lineage development. 

These genome/transcriptome-wide studies follow gene × environ-
ment candidate gene studies focusing on single genetic polymorphisms 
as moderators for the trauma effects. Although, these studies must be 
taken with some caution until replicated in larger samples, they still 
provide important insight into how biological effects of trauma may be 
related to molecular (genetic and epigenetic) factors. 

Some studies investigated polymorphisms in genes associated with 
monoamine neurotransmitter regulation and externalizing/internal-
izing outcomes in response to trauma. Meta-analyses revealed that the 
association between ELT and the short version of the MAOA gene (which 
codes for an enzyme that selectively degrades the dopamine, serotonin, 
and norepinephrine after reuptake from the synaptic cleft) results in 
mental health problems, antisocial behavior, attentional problems, and 
hyperactivity in boys (Kim-Cohen et al., 2006). Adolescent boys with the 
short MAOA allele who were exposed to maltreatment or deprivation 
exhibit more alcohol-related problems than maltreated boys with the 
long MAOA allele (Nilsson et al., 2007). Young people who were ho-
mozygous for the short allele of the serotonin transporter gene promoter 
polymorphism (5- HTTLPR) display elevated vulnerability to internal-
izing behaviors, but only in the presence of ELT, even if the presence of 
positive supports reduced their vulnerability (Kaufman et al., 2004). 
Furthermore, interaction of the short alleles of 5-HTTLPR and trauma 
predicts early use of alcohol in young people (Francis et al., 2000). 
Having two short-short alleles of the 5-HTTLPR gene moderats the as-
sociation between bully victimization and emotional problems, such 

that bullied children are at an increased risk, as adolescents, for 
depression or anxiety; the short-long and long-long genotypes do not 
confer an increased risk (Sugden et al., 2010). 

In a prospective study on the FKBP5 gene, which inhibits glucocor-
ticoid receptor-mediated glucocorticoid activity (Wochnik et al., 2005), 
only the adolescents who were homozygous for the minor alleles show 
an increased incidence of depression after ELT, suggesting that the 
minor allele of the FKBP5 polymorphism and trauma interact to predict 
internalizing behavior later in life (Zimmermann et al., 2011). Three 
variants in the FKBP5 gene (rs4713916, rs1360780, and rs3800373) are 
associated with a failure of cortisol responses to return to baseline in 
traumatized subjects, suggesting a genotype-dependent risk of chroni-
cally elevated cortisol levels as possible mechanism for the increased 
risk for trauma-related disorders (Ising et al., 2008). Cross-sectional 
studies have also found such an interaction in adults who carried the 
minor FKBP5 allele and have histories of ELT, as they have increased 
rates of internalizing behavior (Appel et al., 2011). 

In addition to the presence of certain genes affecting the response to 
trauma, the experiences of adversity may influence genetic expression 
through epigenetic mechanisms, such as DNA methylation and 
hydroxymethylation, posttranslational histone modifications, and non-
coding RNAs (Yehuda and LeDoux, 2007; Champagne, 2013; Turecki 
et al., 2014). Epigenetic signatures are responsive to environmental 
factors and are stable over long periods of time and across generations to 
persistently modify gene transcription. In fact, epigenetic perturbations 
may facilitate the process whereby life experiences (both negative and 
positive) alter gene expression patterns (Bjornsson et al., 2004; 
Malan-Müller et al., 2014), providing a link between environment and 
transcriptome (Binder et al., 2008; Champagne, 2008; Franklin et al., 
2010). In this framework, epigenetic modifications may explain the in-
dividual variability in resilience or predisposition to trauma-related 
diseases (Yehuda and Bierer, 2009; Bowers and Yehuda, 2016). Fuji-
sawa et al. (2019) demonstrated greater methylation of OXTR gene 
coding for oxytocin receptor in adolescents with maltreatment histories 
in comparison to controls, and found that OXTR gene methylation is 
negatively associated with volume in the left orbitofrontal cortex. 

Similar to GWASs, the large-scale epigenome-wide association 
studies (EWASs) move away from hypothesis-driven approach. 
Although, EWASs have limitations similar to those of candidate gene 
studies, they can assess higher-level biological processes beyond indi-
vidual genes. Specifically, evidence for epigenetic changes in the pat-
ways associated to immune system, neural, developmental and 
cardiovascular processes, and stress responses have been reported more 
consistently after childhood maltreatment (Uddin et al., 2010; Cecil 
et al., 2020). 

Recently, it has been demonstrated that in traumatized adolescent 
girls, an intensive 1-week residential group program reduces trauma- 
related symptoms, and in parallel epigenetically modulates 49 methyl-
ated loci annotated to genes linked to neural, immune, and endocrine 
pathways, as well as cancer and cardiovascular disease (Kaliman et al., 
2022). Furthermore, biological and environmental risk for 
trauma-related externalizing conducts in female adolescents is associ-
ated with complex epigenetic changes involving the neurite regulator 
SLITRK5 (Chiocchetti et al., 2022). 

All together, these findings advance that the gene (predisposition) ×
environment (traumatic experience) interplay may produce various 
emotional, behavioral, and neurobiological outcomes. Furthermore, a 
traumatic event may also alter epigenetic patterns potentially associated 
with neural plasticity, and endocrine/immune regulation. Even if it re-
mains unclear if the variations in the genome and epigenome are a 
mechanism linking trauma to mental disorder, or are biomarkers of 
vulnerability, it is important to research in these new, active, and 
cutting-edge fields. 
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6. Interaction between microbiome and trauma: suggestions 
from human and animal studies 

It has become increasingly evident that environmental and epige-
netic factors interact with gut microbial flora, the microbiota (i.e., the 
nonpathogenic microorganisms, including bacteria, viruses, and fungi 
and other single-celled organisms, colonizing the gastrointestinal tract) 
and its entire habitat, the microbiome (including the microbial genetic 
patrimony and products), having thus a strong impact on the health 
(Bhat and Kapila, 2017). Interestingly, the gastrointestinal microbiome 
is increasingly recognized as important for brain function and mental 
health, and vice versa (Fig. 3). For example, gastrointestinal bacteria 
produce neurochemicals essential for brain function and emotional be-
haviors, such as the precursor to serotonin, which then reach the central 
nervous system through humoral and vagal nerve pathways (bidirec-
tional communication channels between the brain and gut) (Cryan and 
Dinan, 2012). Despite the technical advances provided by molecular 
biology have identified the molecular signatures of the microorganisms 
hosting our guts, only a little fraction has been cultured to date, 
rendering questionable the cause-and-effect relationships between 
microbioma and disordered mental health. Thus, the body of evidence 
that is emerging in experimental researches using rodent models (which 
specific taxa are known and less numerous), and beginning to emerge 
clinically, has to be taken into account. 

Animal studies have indicated that modifications of the gastroin-
testinal microbiome affect neurogenesis (Möhle et al., 2016), cortical 
myelination (Hoban et al., 2016), blood-brain barrier function (Braniste 
et al., 2014), microglia maturation (Erny et al., 2015) as well as fear 
learning, stress-related responses, and social behavior (He et al., 2017; 
Hoban et al., 2017; Lu et al., 2018). In addition, the microbiome in-
fluences immune and inflammatory pathways (Belkaid and Hand, 
2014), in turn directly associated with anxiety and depression 

(Vogelzangs et al., 2013, 2016). Manipulations of such bacteria influ-
ence anxiety levels in adult humans (Messaoudi et al., 2011; Collins 
et al., 2013) as well as fear behaviors in developing rodents (Callaghan 
et al., 2016; Cowan et al., 2016). It has been recently advanced that the 
mechanism through which the intestinal microbiome influences the fear 
learning is the modulation of excitatory neurons of the mPFC (Chu et al., 
2019). 

Interestingly, growing evidence indicates that the trauma-related 
microbial profile is involved for the trauma-related phenotype and 
suggests that the microbial ecology may serve as additional biological 
memory of ELT (Leclercq et al., 2016). Conversely, physical and 
emotional trauma in early life damages not only organ/tissue develop-
ment (e.g., brain, gut, immune system) but also microbiome status. 
Importantly, Zhang et al. (2022) suggested that depressed patients with 
ELT show different gut microbiome, which might have a mediating ef-
fect on the influence of early maltreatment on depressive symptoms. 

In many ways, physical and emotional “toxicity” for the microbiome 
has been understudied and potentially underappreciated in the adult 
population in general, and in the adolescent population in particular. 
The microbiome of adolescents (11–18 years old) is distinguishable from 
those of adults (22–61 years old) by specific taxa and relative abundance 
of taxa in the gut (Agans et al., 2011). Once again, the rodent models 
offer the possibility of advancing that the adolescence is a critical win-
dow during which the gut microbiome impacts on trauma-associated 
brain network. In fact, the microbiome changes prior to the end of 
adolescence can be a unique opportunity to shape neuronal develop-
ment (Foster and McVey Neufeld, 2013; McVey Neufeld et al., 2016; 
Flannery et al., 2019). Disrupted development of several neuronal net-
works involved in emotional functioning, including the AMY, mPFC, and 
hippocampus, has been observed in germ-free animals (Ogbonnaya 
et al., 2015; Hoban et al., 2016, 2017, 2018), and these neuronal al-
terations can be lifelong if microbial reconstitution does not occur 

Fig. 3. Gut microbiome and brain interact in modulating life trauma effects in both humans (larger red circle) and mice (smaller red circle). Gut microbiome affects 
neurochemical production, neurogenesis, cortical myelination, microglia maturation, blood-brain barrier function, as well as fear learning, stress-related responses, 
and social behavior. 
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before adolescence. Antibiotic depletion of the gut microbiome during 
adolescence leads to wide changes in concentrations of various neuro-
modulators and metabolites (Desbonnet et al., 2015). 

Callaghan et al. (2020) explored associations between mood and 
gastrointestinal distress by utilizing data from a population of adoles-
cents raised with their biological parents or exposed to ELT. Adverse 
care is associated with increased incidence of gastrointestinal symp-
toms, and gastrointestinal symptoms are associated with internalizing 
behaviors and anxiety. Interestingly, previous trauma is associated with 
changes in microbial communities, and, in turn, bacteria levels are 
correlated with PFC activation to emotional faces. 

Overall, the gut microbiome may be viewed as a determinant in 
modulating the risk for psychiatric disorders. It is therefore possible to 
propose that the adolescence is a susceptible period for the communi-
cation between microbiome and brain. Building a mechanistic under-
standing of the pathways through which trauma might affect both 
microbiome and behavioral symptoms is an important step to identify 
high-risk target groups for early interventions. 

7. Interpersonal and personality traits influence trauma-related 
externalizing/internalizing behaviors in adolescence 

The analysis of the interpersonal and personality traits that influence 
the responses to trauma in adolescence allows interesting reflections. 

Regarding behavioral modeling, caregivers are a vital source of in-
formation on numerous domains as social cognition, emotion regula-
tion, and threat-safety discrimination. On such a basis, caregiver’s 
modeling has a major impact on risk for trauma-related disorders in 
adolescents. For example, parental anxiety can be directly transmitted to 
adolescent offspring (Eley et al., 2015) and can be mitigated by parental 
coaching (Ginsburg et al., 2015). Parental anxious rearing also mediates 
the effects of adversive life events on adolescents (Platt et al., 2016). 
Namely, parental psychological disorders are associated with offspring’s 
distress, behavioral problems, and altered HPA axis functioning, 
particularly when parent and young are exposed to interpersonal 
violence (Leen-Feldner et al., 2013; Lambert et al., 2014). Furthermore, 
maternal emotion dysregulation increases risk for offspring’s 
trauma-related symptoms (Powers et al., 2020), while lower levels of 
parent distress following young’s trauma predict more favorable out-
comes for the young (Pine and Cohen, 2002). Finally, improvements in 
parental distress mediate broad improvements in internalizing and 
externalizing symptoms in traumatized youths (Pine and Cohen, 2002; 
Yasinski et al., 2016). 

It appears also likely that ELT destroys individuals’ secure attach-
ment and self-esteem, impairs homeostatic regulation, peer relation-
ships, and stress resilience (Cicchetti and Lynch, 1995; Lowell et al., 
2014), as well as reduces school achievements during adolescence 
(Greger et al., 2016). Importantly, Vejnović et al. (2019) reported that 
traumatized adolescents have difficulties in the development of per-
sonality (character and temperament dimentions). Traumatized ado-
lescents show low co-operativeness, self-direction and persistence, 
which may be related to the difficulty of setting goals for themselves, to 
achieve an independent identity, to be self-confident, as well as to be 
persistent and tolerant of the frustrations. 

Particular personality traits are closely associated with internal-
izing/externalizing dimensions (Kotov et al., 2010; Fletcher et al., 
2016). Internalizing behaviors are associated with high levels of nega-
tive emotionality that characterizes personality traits linked to avoiding 
dimension, such as neuroticism and harm avoidance. Conversely, 
externalizing behaviors are associated with high levels of disinhibition 
that characterizes personality traits linked to approaching dimension, 
such as extraversion and novelty seeking. 

Personality traits critically impact on the association between ELT 
and psychopathology observed later in life, such as depression (Clark 
and Diamond, 2010; Rosellini and Brown, 2011; Hayashi et al., 2015; 
Hovens et al., 2016). According to the five-factors model of personality, 

while in traumatized youngs higher neuroticism levels are accompanied 
by depressive symptom in adulthood (Huang et al., 2016), extraversion, 
conscientiousness, and emotional stability are protective factors for 
depression severity (Rosellini and Brown, 2011; Hayashi et al., 2015; 
Hovens et al., 2016; Lee and Song, 2017). These findings indicate that 
ELT may lead to unfavorable personality traits and cognitive styles that 
likely support the development of internalizing symptomatology. 

Similar to the findings reported in studies on adult subjects, Rudolph 
and Klein (2009) described that in adolescents higher depressive 
symptoms predict higher depressive personality traits. Oshri et al. 
(2013) found that adolescents with childhood maltreatment have a 
compromised personality organization, and an increased risk for psy-
chopathology. Once more, Zhang et al. (2018) examining the relation-
ship between ELT, personality traits, and depressive symptoms in 
Chinese adolescents indicated that personality style may mediate the 
association between child trauma and internalizing behaviors. 

Furthermore, there is a general consensus that ELT when combined 
with specific personality temperaments (namely high harm avoidance 
that corresponds to neuroticism and novelty seeking that corresponds to 
extraversion) may be predictive of the development of adolescent 
externalizing conducts, as borderline personality disorder (for a review 
see Bozzatello et al., 2021). 

However, it must be noted that the impact on personality develop-
ment exerted by the ELT is not homogeneous and causative and the 
combinations of ELT and personality traits may be numerous in devel-
oping internalizing or externalizing symptoms. 

8. Conclusions 

Research has demonstrated that early trauma is not constrained to a 
moment, but it comes out during adolescence and lingers over the entire 
lifetime with pervasive long-term ramifications (Cowell et al., 2015). 
However, older ages (as a transition phase to adolescence) may be a 
sensitive period to trauma as well (Pechtel et al., 2014). In any case, it 
cannot be excluded that the age of greatest impact will vary depending 
on the domain of functioning. The adolescent brain/body is vulnerable 
to environmental perturbations, and traumatic experiences occurring 
before or during this period have an increased saliency in affecting the 
cognitive and emotional domains, and in enhancing the risk of adoles-
cent externalizing/internalizing behaviors. 

Trauma determines a constellation of neuronal, endocrine, immune, 
and epi/genetic signatures at nearly every level of analysis, from cellular 
signaling to behavioral expression. Trauma-induced alterations impact 
on trauma-sensitive regions (AMY, mPFC, hippocampus, and ventral 
striatum) and on the development of the targets which they project to as 
well. 

Trumatized adolescents show a stronger negative AMY-mPFC func-
tional connectivity - a more mature, adult-like pattern of connectivity – 
(with increased AMY reactivity) associated with internalizing behaviors, 
such as avoidance and depression (Burghy et al., 2012a; Goff et al., 
2013; Hanson et al., 2015; Wolf and Herringa, 2016), while the con-
nectivity of the inferior frontal gyrus may be associated with external-
izing behaviors, such as impulsivity (Herz et al., 2014; Wang et al., 2016; 
Barch et al., 2018a). 

Thus, in the face of trauma adolescents may develop adult-like pat-
terns of connectivity, that play a protective role against adversities. 
However, this protective strategy comes at a great cost, paid with the 
premature end of the sensitive childhood period. This accelerated 
maturation blocks the prolonged synaptogenesis and dendritic/synaptic 
pruning, neuroplasticity, and the neuronal connectivity that is typical of 
adolescents. 

Notably, in traumatized adolescents (especially in females) the 
altered functional connectivity between AMY and mPFC associated with 
internalizing problems is predicted by increased cortisol levels (Burghy 
et al., 2012a), as well as common variation in IL-6 may sensitize ado-
lescents to the internalizing effects of trauma (Pouget et al., 2022). 
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Modern large-scale approaches to understanding genomics, epige-
netics, and transcriptomics have transformed our understanding of 
biomarkers and biological factors that differentiate risk vs. resilience in 
the aftermath of trauma. This review analyzed some of the different 
examples in recent years that have examined specific trauma-related 
pathways mediating threat and deprivation effects, as well as the new 
findings emerging from the largest multi-omic studies (Minelli et al., 
2018; Dalvie et al., 2020). This significant genetic sharing between 
trauma and internalizing/depressive symptoms may represent a mech-
anism of predisposition to post-traumatic psychopathology. 

In this context, the growing field of epigenetics provides a conceptual 
framework that adds insights into the mechanisms of trauma, potentially 
leading to novel preventive, diagnostic, and therapeutic approaches 
(Dunn et al., 2019; Keverne and Binder, 2020). Specifically, decoding 
the trauma epigenetic mechanisms in adolescence is crucial to unveal 
how early experiences are embedded in biological systems and exert 
influence on development and health throughout the lifespan. 

Another promising approach recently employed to address the con-
sequences of trauma in adolescence is the sudy of gut microbiome, given 
the adolescence is a susceptible period for the communication between 
gut and brain. Traumatized adolescents show changes in microbial 
communities, a correlation between gut bacteria levels and PFC acti-
vation, as well as gastrointestinal symptoms associated with internal-
izing behaviors and anxiety (Callaghan et al., 2020). 

Elucidation of the biology of adversities and its effects in adolescence 
is certainly only part of the equation for reducing the consequences of 
the unfortunate experiences. Future studies should ideally capture both 
parental modeling as well as temperamental dispositions to fully un-
derstand trauma effects and risk for internalizing/externalizing behav-
iors in adolescence. 

Overall, it is possible to advance that traumatic experiences leave a 
sign on personality development, increasing the probability to have 
negative personality traits, which may further influence traumatized 
subject’s future wellbeing. For example, high neuroticism that corre-
sponds to negative emotion, and low extraversion that corresponds to 
avoid social interaction and inhibit emotional expression, may enhance 
the occurrence of depressive symptoms in adolescents which could 
benefit from prevention strategies based on personality re-organization 
(Rosellini and Brown, 2011; Hayashi et al., 2015; Hovens et al., 2016; 
Huang et al., 2016; Lee and Song, 2017). 

Finally, we would like to conclude on a note of hope. Life experi-
ences, even if traumatic, are not determinative and with ineluctable 
consequences, since the adaptive plasticity of adolescence marks it as a 
window of opportunity for change through mechanisms of resilience, 
recovery, development and health promotion. 
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